Вторник, 19.03.2024, 07:45
Приветствую Вас Гость | RSS

Строительные материалы  Стр.1 >> Стр.2 >> Стр.3.


Общие сведения о строительных материалах и их основные свойства


В процессе строительства, эксплуатации и ремонта зданий и сооружений строительные изделия и конструкции из которых они возводятся подвергаются различным физико-механическим, физическим и технологическим воздействиям. От инженера-строителя требуется со знанием дела правильно выбрать материал, изделия или конструкцию которая обладает достаточной стойкостью, надёжностью и долговечностью для конкретных условий.

Строительные материалы и изделия, применяемые при строительстве, реконструкции и ремонте различных зданий и сооружений, делятся на
  • природные
  • искусственные
которые в свою очередь подразделяются на две основные категории:

к первой категории относят:
  • кирпич, бетон, цемент, лесоматериалы и др. Их применяют при возведении различных элементов зданий (стен, перекрытий, покрытий, полов).
ко второй категории — специального назначения:
  • гидроизоляционные, теплоизоляционные, акустические и др.

Основные виды строительных материалов и изделий

  • каменные природные строительные материалы и изделия из них
  • вяжущие материалы неорганические и органические
  • лесные материалы и изделия из них
  • металлические изделия
В зависимости от назначения, условий строительства и эксплуатации зданий и сооружений подбираются соответствующие строительные материалы, которые обладают определёнными качествами и защитными свойствами от воздействия на них различной внешней среды. Учитывая эти особенности, любой строительный материал должен обладать определёнными строительно-техническими свойствами. Например, материал для наружных стен зданий должен обладать наименьшей теплопроводностью при достаточной прочности, чтобы защищать помещение от наружного холода; материал сооружения гидромелиоративного назначения — водонепроницаемостью и стойкостью к попеременному увлажнению и высыханию; материал для покрытия дорог (асфальт, бетон) должен иметь достаточную прочность и малую истираемость, чтобы выдержать нагрузки от транспорта.

Классифицируя материалы и изделия, необходимо помнить, что они должны обладать хорошими свойствами и качествами.

Свойство — характеристика материала, проявляющаяся в процессе его обработки, применении или эксплуатации.

Качество — совокупность свойств материала, обуславливающих его способность удовлетворять определённым требованиям в соответствии с его назначением.

Свойства строительных материалов и изделий классифицируют на четыре основные группы:
  • физические,
  • механические,
  • химические,
  • технологические и др.
К химическим относят способность материалов сопротивляться действию химически агрессивной среды, вызывающие в них обменные реакции приводящие к разрушению материалов, изменению своих первоначальных свойств: растворимость, коррозионная стойкость, стойкость против гниения, твердение.

Физические свойства: средняя, насыпная, истинная и относительная плотность; пористость, влажность, влагоотдача, теплопроводность.

Механические свойства: пределы прочности при сжатии, растяжении, изгибе, сдвиге, упругость, пластичность, жёсткость, твёрдость.

Технологические свойства: удобноукладываемость, теплоустойчивость, плавление, скорость затвердевания и высыхания.

Физические свойства строительных материалов.

  1.  Истинная плотность ρ — масса единицы объёма материала в абсолютно плотном состоянии. ρ =m/Va, где Va объём в плотном состоянии. [ρ] = г/см³; кг/м³; т/м³. Например, гранит, стекло и другие силикаты практически абсолютно плотные материалы. Определение истинной плотности: предварительно высушенную пробу измельчают в порошок, объём определяют в пикнометре (он равен объёму вытесненной жидкости).
  2.  Средняя плотность ρm=m/Ve — масса единицы объёма в естественном состоянии. Средняя плотность зависит от температуры и влажности: ρm=ρв/(1+W), где W — относительная влажность, а ρв — плотность во влажном состоянии.
  3.  Насыпная плотность (для сыпучих материалов) — масса единицы объёма рыхло насыпанных зернистых или волокнистых материалов.
  4.  Пористость П — степень заполнения объёма материала порами. П=Vп/Ve, где Vп — объём пор, Ve — объём материала. Пористость бывает открытая и закрытая.
Открытая пористость По — поры сообщаются с окружающей средой и между собой, заполняются водой при обычных условиях насыщения (погружении в ванну с водой). Открытые поры увеличивают проницаемость и водопоглощение материала, снижают морозостойкость.

Закрытая пористость Пз=П-По. Увеличение закрытой пористости повышает долговечность материала, снижает звукопоглощение.

Пористый материал содержит и открытые, и закрытые поры

Гидрофизические свойства стройматериалов.

  1.     Водопоглощение пористых материалов определяют по стандартной методике, выдерживая образцы в воде при температуре 20±2 °C. При этом вода не проникает в закрытые поры, то есть водопоглощение характеризует только открытую пористость. При извлечении образцов из ванны вода частично вытекает из крупных пор, поэтому водопоглощение всегда меньше пористости. Водопоглощение по объёму Wo (%) — степень заполнения объёма материала водой: Wo=(mв-mc)/Ve*100, где mв — масса образца материала, насыщенного водой; mc — масса образца в сухом состоянии. Водопоглощение по массе Wм (%) определяют по отношению к массе сухого материала Wм=(mв-mc)/mc*100. Wo=Wм*γ, γ — объемная масса сухого материала, выраженная по отношению к плотности воды (безразмерная величина). Водопоглощение используют для оценки структуры материала с помощью коэффициента насыщения: kн = Wo/П. Он может меняться от 0 (все поры в материале замкнутые) до 1 (все поры открытые). Уменьшение kн говорит о повышении морозостойкости.
  2.     Водопроницаемость — это свойство материала пропускать воду под давлением. Коэффициент фильтрации kф (м/ч — размерность скорости) характеризует водопроницаемость: kф=Vв*а/[S(p1-p2)t], где kф=Vв — количество воды, м³, проходящей через стенку площадью S = 1 м², толщиной а = 1 м за время t = 1ч при разности гидростатического давления на границах стенки p1 — p2 = 1 м вод. ст.
  3.     Водонепроницаемость материала характеризуется маркой W2; W4; W8; W10; W12, обозначающей одностороннее гидростатическое давление в кгс/см², при котором бетонный образец-цилиндр не пропускает воду в условиях стандартного испытания. Чем ниже kф, тем выше марка по водонепроницаемости.
  4.     Водостойкость характеризуется коэффициентом размягчения kp = Rв/Rс, где Rв — прочность материала насыщенного водой, а Rс — прочность сухого материала. kp меняется от 0 (размокающие глины) до 1 (металлы). Если kp меньше 0,8, то такой материал не используют в строительных конструкциях, находящихся в воде.
  5.     Гигроскопичность — свойство капиллярно-пористого материала поглощать водяной пар из воздуха. Процесс поглощения влаги из воздуха называется сорбцией, он обусловлен полимолекулярной адсорбцией водяного пара на внутренней поверхности пор и капиллярной конденсацией. С повышением давления водяного пара (то есть увеличением относительной влажности воздуха при постоянной температуре) возрастает сорбционная влажность материала.
  6.     Капиллярное всасывание характеризуется высотой поднятия воды в материале, количеством поглощённой воды и интенсивностью всасывания. Уменьшение этих показателей отражает улучшение структуры материала и повышение его морозостойкости.
  7.     Влажностные деформации. Пористые материалы при изменении влажности меняют свой объём и размеры. Усадка — уменьшение размеров материала при его высыхании. Набухание происходит при насыщении материала водой.

Теплофизические свойства стройматериалов.

  1.     Теплопроводность — свойство материала передавать тепло от одной поверхности к другой. Формула Некрасова связывает теплопроводность λ [Вт/(м*С)] с объемной массой материала, выраженной по отношению к воде: λ=1,16√(0,0196 + 0,22γ2)-0,16. При повышении температуры теплопроводность большинства материалов возрастает. R — термическое сопротивление, R = 1/λ.
  2.     Теплоемкость с [ккал/(кг*С)] — то количество тепла, которое необходимо сообщить 1 кг материала, чтобы повысить его температуру на 1С. Для каменных материалов теплоемкость меняется от 0,75 до 0,92 кДж/(кг*С). С повышением влажности возрастает теплоемкость материалов.
  3.     Огнеупорность — свойство материала выдерживать длительное воздействие высокой температуры (от 1580 °C и выше), не размягчаясь и не деформируясь. Огнеупорные материалы применяют для внутренней футеровки промышленных печей. Тугоплавкие материалы размягчаются при температуре выше 1350 °C.
  4.     Огнестойкость — свойство материала сопротивляться действию огня при пожаре в течение определённого времени. Она зависит от сгораемости материала, то есть от его способности воспламеняться и гореть. Несгораемые материалы — бетон, кирпич, сталь и т. д. Но при температуре выше 600 °C некоторые несгораемые материалы растрескиваются (гранит) или сильно деформируются (металлы). Трудносгораемые материалы под воздействием огня или высокой температуры тлеют, но после прекращения действия огня их горение и тление прекращается (асфальтобетон, пропитанная антипиренами древесина, фибролит, некоторые пенопласты). Сгораемые материалы горят открытым пламенем, их необходимо защищать от возгорания конструктивными и другими мерами, обрабатывать антипиренами.
  5.     Линейное температурное расширение. При сезонном изменении температуры окружающей среды и материала на 50 °C относительная температурная деформация достигает 0,5-1 мм/м. Во избежание растрескивания сооружения большой протяжённости разрезают деформационными швами.

Морозостойкость строительных материалов.

  1.     Морозостойкость — свойство насыщенного водой материала выдерживать попеременное замораживание и оттаивание. Количественно морозостойкость оценивается маркой. За марку принимается наибольшее число циклов попеременного замораживания до −20 °C и оттаивания при температуре 12-20 °C, которое выдерживают образцы материала без снижения прочности на сжатие более 15 %; после испытания образцы не должны иметь видимых повреждений — трещин, выкрашивания (потери массы не более 5 %).

Механические свойства строительных материалов

Упругость — самопроизвольное восстановление первоначальной формы и размера после прекращения действия внешней силы.

Пластичность — свойство изменять форму и размеры под действием внешних сил не разрушаясь, причём после прекращения действия внешних сил тело не может самопроизвольно восстанавливать форму и размер.

Остаточная деформация — пластичная деформация.

Относительная деформация — отношение абсолютной деформации к начальному линейному размеру(ε=Δl/l).

Модуль упругости — отношения напряжения к отн. деформации (Е=σ/ε).

Прочность — свойство материала сопротивляться разрушению под действием внутренних напряжений, вызванных внешними силами или др. Прочность оценивают пределом прочности — временным сопротивлением R, определённом при данном виде деформации. Для хрупких (кирпич, бетон) основная прочностная характеристика — предел прочности при сжатии. Для металлов, стали — прочность при сжатии такая же, как и при растяжении и изгибе. Так как строительные материалы неоднородны, предел прочности определяют как средний результат серии образцов. На результаты испытаний влияют форма, размеры образцов, состояния опорных поверхностей, скорость нагружения. В зависимости от прочности материалы делятся на марки и классы. Марки записываются в кгс/см², а классы - в МПа. Класс характеризует гарантированную прочность. Класс по прочности В называется временным сопротивлением сжатию стандартных образцов (бетонных кубов с размером ребра 150 мм), испытанных в возрасте 28 суток хранения при температуре 20±2 °C с учётом статической изменчивости прочности.

Коэффициент конструктивного качества: ККК=R/γ(прочность на относит. плотность), для 3-й стали ККК=51 МПа, для высокопрочной стали ККК=127 МПа, тяжелого бетона ККК=12,6 МПа, древесины ККК=200 МПа.

Твердость — показатель, характеризующий свойство материалов сопротивляться проникновению в него другого, более плотного материала. Показатель твердости: НВ=Р/F (F — площадь отпечатка, P — это сила), [НВ]=МПа. Шкала Мооса: тальк, гипс, известь…алмаз.

Истирание — потеря первоначальной массы образца при прохождении этим образцом определённого пути абразивной поверхности. Истирание: И=(m1-m2)/F, где F — площадь истираемой поверхности.

Износ — свойство материала сопротивляться одновременно воздействию истирающих и ударных нагрузок. Износ определяют в барабане со стальными шарами или без них.


Природные каменные материалы



Классификация и основные виды горных пород

В качестве природных каменных материалов в строительстве используют горные породы, которые обладают необходимыми строительными свойствами.

По геологической классификации горные породы подразделяют на три типа:
  1. магматические (первичные)
  2. осадочные (вторичные)
  3. метаморфические (видоизменённые).
1) Изверженные (первичные) горные породы образовались при остывании поднявшейся из глубин земли расплавленной магмы. Строения и свойства изверженных горных пород в значительной степени зависят от условия остывания магмы, в связи с чем эти породы подразделяют на глубинные и излившиеся.

Глубинные горные породы образовались при медленном остывании магмы в глубине земной коры при больших давлениях вышележащих слоёв земли, что способствовало формированию пород с плотной зернисто-кристаллической структурой, большой и средней плотностью, высоким пределом прочности при сжатии. Эти породы обладают малым водопоглощением и высокой морозостойкостью. К этим породам относят гранит, сиенит, диорит, габбро и др.

Излившиеся породы образовались в процессе выхода магмы на земную поверхность при сравнительно быстром и неравномерном охлаждении. Наиболее распространёнными излившимися породами являются порфир, диабаз, базальт, вулканические рыхлые породы.

2) Осадочные (вторичные) горные породы образовались из первичных (изверженных) горных пород под воздействием температурных перепадов, солнечной радиации, действия воды, атмосферных газов и др. В связи с этим осадочные горные породы подразделяют на обломочные (рыхлые), химические и органогенные.

К обломочным рыхлым горным породам относят гравий, щебень, песок, глину.

Химические осадочные породы: известняк, доломит, гипс.

Органогенные горные породы: известняк-ракушечник, диатомит, мел.

3) Метаморфические (видоизменённые) горные породы образовались из изверженных и осадочных горных пород под влиянием высоких температур и давлений в процессе поднятия и опускания земной коры. К ним относят глинистый сланец, мрамор, кварцит.

Классификация и основные виды природных каменных материалов

Природные каменные материалы и изделия получают путём обработки горных пород.
По способу получения каменные материалы подразделяют на:
  • рваный камень (бут) — добывают взрывным способом
  • грубоколотый камень — получают раскалыванием без обработки
  • дроблёный — получают дроблением (щебень, искусственный песок)
  • сортированный камень (булыжник, гравий).
Каменные материалы по форме делят на
  • камни неправильной формы (щебень, гравий)
  •  штучные изделия, имеющие правильную форму (плиты, блоки).

Щебень — остроугольные куски горных пород размером от 5 до 70 мм, получаемые при механическом или природном дроблении бута (рваный камень) или естественных камней. Его используют в качестве крупного заполнителя для приготовления бетонных смесей, устройства оснований.

Гравий — окатанные куски горных пород размером от 5 до 120 мм, также используется для приготовления искусственных гравийно-щебёночных смесей.

Песок— рыхлая смесь зёрен горных пород размером от 0,14 до 5 мм. Он образуется обычно в результате выветривания горных пород, но может быть получен и искусственным путём — дроблением гравия, щебня, и кусков горных пород.

Гидратационные (неорганические) вяжущие вещества


  1. Воздушные вяжущие вещества.
  2. Гидравлические вяжущие вещества.
Гидратационными (неорганическими) вяжущими веществами называют тонко измельчённые материалы (порошки), которые при смешивании с водой образуют пластичное тесто, способное в процессе химического взаимодействия с ней затвердевать, набирать прочность, связывая при этом в единый монолит введённые в него заполнители, обычно каменные материалы (песок, гравий, щебень), образуя тем самым искусственный камень типа песчаника, конгломерата.

Гидратационные вяжущие подразделяют на:
  • воздушные (твердеющие и набирающие прочность только в воздушной среде)
  • гидравлические (твердеющие во влажной, воздушной среде и под водой).
Строительная воздушная известь (CaO) — продукт умеренного обжига при 900—1300 °C природных карбонатных пород (CaCO3), содержащих до 8 % глинистых примесей (известняк, доломит, мел и др.). Обжиг осуществляют в шахтах и вращающихся печах. Наиболее широкое распространение получили шахтные печи. При обжиге известняка в шахтной печи движущийся в шахте сверху вниз материал проходит последовательно три зоны: зону подогрева (сушка сырья и выделение летучих веществ), зону обжига (разложение веществ) и зону охлаждения. В зоне подогрева известняк нагревается до 900 °C за счёт тепла поступающего из зоны обжига от газообразных продуктов горения. В зоне обжига происходит горение топлива и разложение известняка (CaCO3) на известь (CaO) и диоксид углерода (CO2) при температуре 1000—1200 °C. В зоне охлаждения обожжённый известняк охлаждается до 80-100 °C двигающимся снизу вверх холодным воздухом.

В результате обжига полностью теряется двуокись углерода и получается комовая, негашёная известь в виде кусков белого или серого цвета. Комовая негашёная известь является продуктом, из которого получают разные виды строительной воздушной извести: молотую порошкообразную негашёную известь, известковое тесто.

Строительную воздушную известь различного вида используют при приготовлении кладочных и штукатурных растворов, бетонов низких марок (работающих в воздушно-сухих условиях), изготовлении плотных силикатных изделий (кирпича, крупных блоков, панелей), получении смешанных цементов.

Гидротехнические и гидромелиорационные сооружения и конструкции работают в условиях постоянного воздействия воды. Эти тяжёлые условия эксплуатации конструкций и сооружений требуют применения вяжущих веществ, обладающих не только необходимыми прочностными свойствами, но и водостойкостью, морозостойкостью и коррозионной стойкостью. Такими свойствами обладают гидравлические вяжущие вещества.

Гидравлическую известь получают умеренным обжигом природных мергелей и мергелистых известняков при 900—1100 °C. Мергель и мергелистый известняк идущие для производства гидравлической извести содержат от 6 до 25 % глинистых и песчаных примесей. Её гидравлические свойства характеризуются гидравлическим (или основным) модулем (m), представляющим отношение в процентах содержания окислов кальция к содержанию суммы окислов кремния, алюминия и железа:

Гидравлическая известь — медленно схватывающееся и медленнотвердеющее вещество. Её применяют для приготовления строительных растворов, низкомарочных бетонов, легких бетонов, при получении смешанных бетонов.

Портландцемент


Гидравлическое вяжущее вещество, получаемое путём совместного, тонкого помола клинкера и двуводного гипса.

Клинкер — продукт обжига до спекания (при t>1480 °C) однородной, определённого состава природной или сырьевой смеси известняка или гипса. Сырьевую массу обжигают во вращающихся печах.

Портландцемент как вяжущее вещество используют при приготовлении цементных растворов и бетонов.

Шлакопортландцемент — в своём составе имеет гидравлическую добавку в виде гранулированного, доменного или электротермофосфорного шлака, охлаждаемого по специальному режиму. Его получают путём совместного помола портландцементного клинкера (до 3,5 %), шлака (20-80 %), и гипсового камня (до 3,5 %). Шлакопортландцемент характеризуется медленным нарастанием прочности в начальные сроки твердения, однако в дальнейшем скорость нарастания прочности возрастает. Он чувствителен к окружающей температуре, стоек при воздействии на него мягких сульфатных вод, имеет пониженную морозостойкость.

Карбонатный портландцемент получают путём совместного помола цементного клинкера с 30 % известняка. Он обладает пониженным тепловыделением при твердении, повышенной стойкостью.

Марка портландцемента — условное обозначение, выражающее минимальные требования к пределу прочности при сжатии образцов из стандартного цементного раствора, изготовленных, твердевших и испытанных в условиях и в сроки, установленные нормативной документацией (ГОСТ 10178, ГОСТ310). Марку портландцемента получают путём округления в низшую сторону до целых значений (400, 500, 550 и 600) прочностного ряда в кг/см², определяемого соответствующим стандартом (например, в данном случае, ГОСТ 10178), величин прочности при сжатии образцов — половинок призм размером 4×4×16 см, предварительно испытанных на прочность при изгибе в возрасте 28 суток. Образцы изготавливаются (ГОСТ 310) из растворной смеси 1:3 на стандартном нормальном песке при В/Ц близком к 0,40, хранятся до испытаний в течение суток при влажности не менее 90 %, а затем до 28 суток в воде при температуре 20±2 °C.

Для отнесения цемента к определённой марке, кроме нормируемых значений прочности при сжатии в возрасте 28 суток, должны быть также определены нормируемые значения прочности при изгибе, а для быстротвердеющего портландцемента и шлакопортландцемента, кроме прочности в 28 суток, также нормируемые значения прочности при сжатии и изгибе в возрасте 3 суток.

Активность цемента, используемая для расчётов состава бетона и др. смесей, является показателем прочности на сжатие образца размером 4×4×16 см в возрасте 28 суток.

Кроме предусмотренных ГОСТ 10178 марок 400, 500, 550 и 600, производитель цемента по техническим условиям может выпускать цементы более низких (300, 200) или более высоких марок (700 и выше).

Наряду с характеристикой прочности цемента путём отнесения его к той или иной марке, нормативные документы (ГОСТ 30515, ГОСТ 30744, ГОСТ 31108) предусматривают возможность отнесения цемента к определённому классу прочности.

Строительные растворы


Строительные растворы представляют собой тщательно отдозированные мелкозернистые смеси, состоящие из неорганического вяжущего вещества (цемент, известь, гипс, глина), мелкого заполнителя (песка, дроблёного шлака), воды и в необходимых случаях добавок (неорганических или органических). В свежеприготовленном состоянии их можно укладывать на основание тонким слоем, заполняя все его неровности. Они не расслаиваются, схватываются, твердеют и набирают прочность, превращаясь в камневидный материал.

Строительные растворы используют при каменных кладках, отделочных, ремонтных и др. работах. Их классифицируют по средней плотности: тяжёлые с средней ρ=1500 кг/м³, лёгкие со средней ρ<1500 кг/м³. По назначению: гидроизоляционные, талтопогенные, инъекционные, кладочные, отделочные и др.

Растворы приготовленные на одном виде вяжущего вещества, называют простыми, из нескольких вяжущих веществ смешанными (цементно-известковый).

Строительные растворы приготовленные на воздушных вяжущих, называют воздушными (глиняные, известковые, гипсовые). Состав растворов выражают двумя (простые 1:4) или тремя (смешанные 1:0,5:4) числами, показывающие объёмное соотношение количества вяжущего и мелкого заполнителя. В смешанных растворах первое число выражает объёмную часть основного вяжущего вещества, второе — объёмную часть дополнительного вяжущего вещества по отношению к основному. В зависимости от количества вяжущего вещества и мелкого заполнителя растворные смеси подразделяют на жирные — с содержанием большого количества вяжущего вещества. Нормальные — с обычным содержанием вяжущего вещества. Тощие — содержащие относительно небольшое количество вяжущего вещества (малопластичные).

Для приготовления строительных растворов лучше использовать песок с зёрнами, имеющими шероховатую поверхность. Песок предохраняет раствор от растрескивания при твердении, снижает его стоимость.

Гидроизоляционные растворы (водонепроницаемые) — цементные растворы состава 1:1 — 1:3,5 (обычно жирные), в которые добавляют алюминат натрия, нитрат кальция, хлористое железо, битумную эмульсию.

Для изготовления гидроизоляционных растворов используют портландцемент, сульфатостойкий портландцемент. В качестве мелкого заполнителя в гидроизоляционных растворах используют песок.

Кладочные строительные растворы — используют при кладке каменных стен, подземных сооружений. Они бывают цементно-известковые, цементно-глиняные, известковые и цементные.

Отделочные (штукатурные) растворы — подразделяют по назначению на наружные и внутренние, по расположению в штукатурке на подготовительные и отделочные.

Акустические растворы — лёгкие растворы, обладающие хорошей звукоизоляцией. Приготовляют эти растворы из портландцемента, шлакопортландцемента, извести, гипса и др. вяжущих веществ с использованием в качестве заполнителя лёгких пористых материалов (пемзы, перлита, керамзита, шлака).

Стекло и стеклянные изделия


Стекло — переохлаждённый расплав сложного состава из смеси силикатов и других веществ. Отформованные стеклянные изделия подвергают специальной термической обработки — обжигу.

Оконное стекло выпускают в листах размером до 3210×6000 мм. Стекло в соответствии с его оптическими искажениями и нормируемыми пороками подразделяют на марки М0-М7.

По толщине стекло делят на:
  • одинарное (толщиной 2 мм)
  • полуторное (2,5 мм)
  • двойное (3 мм)
  • утолщённое (4-10 мм).
Витринное стекло выпускают полированным и неполированным в виде плоских листов толщиной 2-12 мм. Применяют его для остекления витрин и проёмов. В дальнейшем листы стекла можно подвергать дальнейшей обработке: гнуть, закалять, наносить покрытия.

Стекло листовое высокоотражающее — это обычное оконное стекло, на поверхность которого нанесена тонкая полупрозрачная отражающая свет плёнка, изготовленная на основе окиси титана. Стекло с плёнкой отражает до 40 % падающего света, светопропускание 50-50 %. Стекло уменьшает просмотр с наружной стороны и снижает проникание внутрь помещения солнечной радиации.

Стекло листовое радиозащитное — это обычное оконное стекло, на поверхность которого нанесена тонкая прозрачная экранирующая плёнка. Экранирующую плёнку наносят на стекло в процессе его формирования на машинах. Светопропускание не ниже 70 %.

Армированное стекло — изготавливают на поточных линиях методом непрерывного проката с одновременным закатыванием внутрь листа металлической сетки. Это стекло имеет гладкую, узорчатую поверхность, может быть бесцветным или цветным.

Стекло теплопоглощающее обладает способностью поглощать инфракрасные лучи солнечного спектра. Оно предназначено для остекления оконных проёмов с целью уменьшения проникания солнечной радиации внутрь помещений. Это стекло пропускает лучи видимого света не менее чем на 65 %, инфракрасных лучей не более 35 %.

Стеклянные трубы изготавливают из обычного прозрачного стекла способом вертикального или горизонтального вытягивания. Длина труб 1000-3000 мм, внутренний диаметр 38-200 мм. Трубы выдерживают гидравлическое давление до 2 МПа.

Ситаллы получают путём введения в расплавленную стеклянную массу специального состава катализаторов кристаллизации. Из такого расплава формируют изделия, затем их охлаждают, в результате чего расплавленная масса превращается в стекло. При последующей тепловой обработке стекла происходит его полная или частичная кристаллизация — образуется ситолл. Они имеют большую прочность, малую среднюю плотность, высокую износостойкость. Их применяют при облицовке наружных или внутренних стен, изготовления труб, плит для полов.

Стемалит представляет листовое стекло различной фактуры, покрытое с одной стороны глухими керамическими кристаллами разного цвета. Изготавливают его из неполированного витринного или прокатного стекла толщиной 6-12 мм. Применяют его для наружной и внутренней облицовки зданий, изготовления стеновых панелей.

Безобжиговые искусственные каменные материалы и изделия на основе гидротационных вяжущих веществ


Безобжиговые искусственные каменные материалы и изделия изготавливают из смеси вяжущих веществ, воды и заполнителей путём её формирования и соответствующей обработки. По виду вяжущего вещества их подразделяют на силикатные, известково-шлаковые, газосиликатные, газобетонные, гипсовые, гипсобетонные, асбестоцементные и др.

По условиям твердения — их делят на:
  • изделия твердеющие при автоклавной и тепловой обработке
  • изделия, твердеющие в условиях воздушно-влажной среды.

Материалы и изделия автоклавного твердения

Для производства изделий автоклавного твердения широко используют местные материалы: известь, кварцевые пески, отходы промышленности.

Прочные и водостойкие автоклавные материалы и изделия получаются в результате химического взаимодействия тонкоизмельчённых извести и кремнезёмистых компонентов в процессе их гидротермической обработки в паровой среде при 175 °C в автоклавах под давлением 0,8-1,4 МПа. В результате химической реакции возникает прочное и водостойкое вещество (силикат кальция), который цементирует частицы песка, образуя искусственный камень. Автоклавные материалы и изделия могут иметь как плотную, так и ячеистую структуру.

Автоклавный силикатный бетон

Смесь известково-кремнезёмистого вяжущего, песка и воды. В качестве вяжущих используют известково-пуццолановый, известково-шлаковый и известково-зольный цементы. Изделия из силикатного автоклавного бетона имеют достаточную морозостойкость, водостойкость и химическую стойкость к некоторым агрессивным средам. Из автоклавного силикатного изготовляют крупные, плотные, силикатные стеновые блоки.

Автоклавный ячеистый бетон

Приготовляют из однородной смеси минерального вяжущего, кремнезёмистого компонента, гипса и воды. Вяжущими материалами служат портландцемент, молотая известь-кипелка. Во время выдержки изделия перед автоклавной обработкой из него выделяется водород, в результате чего в однородной пластично-вязкой вяжущей среде образуются мельчайшие пузырьки. В процессе газовыделения эти пузырьки увеличиваются в размерах, создавая сфероидальные ячейки во всей массе ячеистой бетонной смеси.

При автоклавной обработке под давлением 0,8-1,2 МПа в высоковлажной воздушно-паровой среде при 175—200 °C происходит интенсивное взаимодействие вяжущего вещества кремнезёмным компонентов с образованием силиката кальция и др. цементирующих новообразований, благодаря которым структура ячеисто высокопористого бетона приобретает прочность.

Из ячеистого бетона изготовляют панели однорядной разрезки, стеновые и крупные блоки, однослойные и двухслойные стеновые навесные панели, однослойные плиты междуэтажных и чердачных перекрытий.

Силикатный кирпич формуют на специальных прессах из тщательно приготовленной однородной смеси чистого кварцевого песка (92-95 %), воздушной извести (5-8 %) и воды (7-8 %). После прессования кирпич запаривают в автоклавах в среде, насыщенной парами, при 175 °C и давлении 0,8 МПа. Изготавливают кирпич одинарный размером 250×120×65 мм и модульный (полуторный) размером 250×120×88 мм; сплошной и пустотелый, лицевой и рядовой. Марка кирпича: 75, 100, 125, 150, 200, 250.

Асбестоцементные изделия

Для изготовления асбестоцементных изделий используют асбестоцементную смесь, состоящую из тонковолокнистого асбеста (8-10 %), портландцемента для асбестоцементных изделий и воды. После затвердевания смеси образуется искусственный асбестоцементный каменный материал, представляющий цементный камень. Для производства асбестоцементных изделий применяют асбест III—IV сорта, портландцемент для асбестоцементных изделий марок 300, 400, 500 или песчаный цемент, состоящий из портландцемента и тонкомолотого кварцевого песка и воду с температурой 20-25 °C, не содержащему глинистых примесей, органических веществ и минеральных солей.

Трубы водопроводные безнапорные и напорные, для прокладки телефонных кабелей и газовые имеют правильную цилиндрическую форму. Они гладкие, не имеют трещин. Безнапорные трубы применяют при прокладке безнапорных внутренних и наружных трубопроводов, транспортирующих бытовые и атмосферные сточные воды; при строительстве безнапорных трубчатых гидротехнических сооружений и дренажных коллекторов осушительных систем; при подземной прокладке кабелей. Напорные трубы широко применяют при строительстве подземных водопроводов, современных автоматизированных оросительных систем, теплосетей.

Плиты плоские облицовочные прессованные изготовляют неокрашенные, окрашенные. Их применяют для облицовки стен, перегородок панелей. Длина их 600—1600 мм, ширина 300—1200, толщина 4-10 мм.

1 2 3


Источник: wikipedia